May 2023: Welcome to the alpha release of TYPE III AUDIO.
Expect very rough edges and very broken stuff—and daily improvements.
Please share your thoughts, but don't share this link on social media, for now.

Homearrow rightPlaylists

LW - Clarifying and predicting AGI by Richard Ngo

AGI Safety Fundamentals: Alignment

Readings from the AI Safety Fundamentals: Alignment course.


Apple PodcastsSpotifyGoogle PodcastsRSS

Link to original article

Welcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Clarifying and predicting AGI, published by Richard Ngo on May 4, 2023 on LessWrong. This post is a slightly-adapted summary of two twitter threads, here and here. The t-AGI framework As we get closer to AGI, it becomes less appropriate to treat it as a binary threshold. Instead, I prefer to treat it as a continuous spectrum defined by comparison to time-limited humans. I call a system a t-AGI if, on most cognitive tasks, it beats most human experts who are given time t to perform the task. What does that mean in practice? A 1-second AGI would need to beat humans at tasks like quickly answering trivia questions, basic intuitions about physics (e.g. "what happens if I push a string?"), recognizing objects in images, recognizing whether sentences are grammatical, etc. A 1-minute AGI would need to beat humans at tasks like answering questions about short text passages or videos, common-sense reasoning (e.g. Yann LeCun's gears problems), simple computer tasks (e.g. use photoshop to blur an image), justifying an opinion, looking up facts, etc. A 1-hour AGI would need to beat humans at tasks like doing problem sets/exams, writing short articles or blog posts, most tasks in white-collar jobs (e.g. diagnosing patients, giving legal opinions), doing therapy, doing online errands, learning rules of new games, etc. A 1-day AGI would need to beat humans at tasks like writing insightful essays, negotiating business deals, becoming proficient at playing new games or using new software, developing new apps, running scientific experiments, reviewing scientific papers, summarizing books, etc. A 1-month AGI would need to beat humans at coherently carrying out medium-term plans (e.g. founding a startup), supervising large projects, becoming proficient in new fields, writing large software applications (e.g. a new OS), making novel scientific discoveries, etc. A 1-year AGI would need to beat humans at... basically everything. Some projects take humans much longer (e.g. proving Fermat's last theorem) but they can almost always be decomposed into subtasks that don't require full global context (even tho that's often helpful for humans). Some clarifications: I'm abstracting away from the question of how much test-time compute AIs get (i.e. how many copies are run, for how long). A principled way to think about this is probably something like: "what fraction of the world's compute is needed?". But in most cases I expect that the bottleneck is being able to perform a task at all; if they can then they'll almost always be able to do it with a negligible proportion of the world's compute. Similarly, I doubt the specific "expert" theshold will make much difference. But it does seem important that we use experts not laypeople, because the amount of experience that laypeople have with most tasks is so small. It's not really well-defined to talk about beating "most humans" at coding or chess; and it's not particularly relevant either. I expect that, for any t, the first 100t-AGIs will be way better than any human on tasks which only take time t. To reason about superhuman performance we can extend this framework to talk about (t,n)-AGIs which beat any group of n humans working together on tasks for time t. When I think about superintelligence I'm typically thinking about (1 year, 8 billion)-AGIs. The value of this framework is ultimately an empirical matter. But it seems useful so far: I think existing systems are 1-second AGIs, are close to 1-minute AGIs, and are a couple of years off from 1-hour AGIs. (FWIW I formulated this framework 2 years ago, but never shared it widely. From your perspective there's selection bias—I wouldn't have shared it if I'd changed my mind. But at least from my perspective, it gets points for being useful for describing events since then.) And very briefly, some of th...